Matrix Algebra - A Minimal Introduction

James H. Steiger
Department of Psychology and Human Development
Vanderbilt University

Matrix Algebra - A Minimal Introduction

(1) Why Matrix Algebra?

- The Linear Combination
(2) Basic Definitions
- A Matrix
- Matrix Notation
- Matrix Terminology - Types of Matrices
(3) Matrix Operations
- Matrix Addition and Subtraction
- Scalar Multiple
- Scalar Product
- Matrix Transposition
- Matrix Multiplication
- Matrix Inversion
- Sets of Linear Equations
- Trace of a Square Matrix
- Trace of a Square Matrix

Definition of a Linear Combination

Definition

- Suppose you have two predictors, x_{1} and x_{2}
- The variable $\hat{y}=b_{1} x_{1}+b_{2} x_{2}$ is said to be a linear combination of x_{1} and x_{2}
- b_{1} and b_{2} are the linear weights which, in a sense, define a particular linear combination

Linear Combinations in Regression

Linear Combinations in Regression

- As we just saw, a linear model for y is a linear combination of one or more predictor variables, plus an intercept and an error term
- Statistical laws that generally apply to linear combinations must then also apply to linear models

Linear Combinations in Regression

Linear Combinations in Regression

- Regression models often contain many predictors, so we might well profit by a notation that allows us to talk about linear combinations with any number of predictors
- Matrix algebra provides mathematical tools and notation for discussing linear models compactly

Definition of A Matrix

Definition

- A matrix is defined as an ordered array of numbers, of dimensions p, q.

Example
Below is a matrix \mathbf{A} of dimensions 3×3.

$$
\mathbf{A}=\left(\begin{array}{lll}
2 & 1 & 4 \\
7 & 1 & 8 \\
6 & 6 & 0
\end{array}\right)
$$

Matrix Notation

Notation

- My standard notation for a matrix \mathbf{A} of order p, q will be:

$$
{ }_{p} \mathbf{A}_{q}
$$

- Note that in my notation, matrices and vectors are in boldface

Matrix Notation

Elements of a Matrix

Matrix Elements

- The individual numbers in a matrix are its elements
- We use the following notation to indicate that " \mathbf{A} is a matrix with elements $a_{i j}$ in the i, j th position"

$$
\mathbf{A}=\left\{a_{i j}\right\}
$$

Matrix Notation

Subscript Notation

Subscript Notation

- When we refer to element $a_{i j}$, the first subscript will refer to the row position of the elements in the array
- The second subscript (regardless of which letter is used in this position) will refer to the column position.
- Hence, a typical matrix ${ }_{p} \mathbf{A}_{q}$ will be of the form:

$$
\mathbf{A}=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 q} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 q} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 q} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{p 1} & a_{p 2} & a_{p 3} & \cdots & a_{p q}
\end{array}\right)
$$

Types of Matrices

On several subsequent slides, we will define a number of types of matrices that are referred to frequently in practice.

Types of Matrices

Rectangular Matrix

Rectangular Matrix
For any ${ }_{p} \mathbf{A}_{q}$, if $p \neq q, \mathbf{A}$ is a rectangular matrix
Example

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right)
$$

Types of Matrices

Square Matrix
Square Matrix
For any ${ }_{p} \mathbf{A}_{q}$, if $p=q, \mathbf{A}$ is a square matrix
Example

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Types of Matrices

Lower Triangular Matrix
Lower Triangular Matrix
For any square matrix \mathbf{A}, \mathbf{A} is lower triangular if $a_{i j}=0$ for $i<j$

Example

$$
\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 10
\end{array}\right)
$$

Types of Matrices

Upper Triangular Matrix
Upper Triangular Matrix
For any square matrix \mathbf{A}, \mathbf{A} is upper triangular if $a_{i j}=0$ for $i>j$

Example

$$
\left(\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 10
\end{array}\right)
$$

Types of Matrices

Diagonal Matrix

Diagonal Matrix
For any square matrix \mathbf{A}, \mathbf{A} is a diagonal matrix if $a_{i j}=0$ for $i \neq j$

Example

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 7
\end{array}\right)
$$

Types of Matrices

Scalar Matrix

Scalar Matrix

For any diagonal matrix \mathbf{A}, if all diagonal elements are equal, \mathbf{A} is a scalar matrix
Example

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Types of Matrices

Identity Matrix
Identity Matrix
For any scalar matrix \mathbf{A}, if all diagonal elements are $1, \mathbf{A}$ is an identity matrix
Example

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Types of Matrices

Symmetric Matrix

Square Matrix
A square matrix \mathbf{A} is symmetric if $a_{j i}=a_{i j} \forall i, j$
Example
$\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 4 & 2\end{array}\right]$

Types of Matrices

Null Matrix

Null Matrix
For any ${ }_{p} \mathbf{A}_{q}, \mathbf{A}$ is a null matrix if all elements of \mathbf{A} are 0 .

Example

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Types of Matrices

Row Vector

Row Vector

- A row vector is a matrix with only one row
- It is common to identify row vectors in matrix notation with lower-case boldface and a "prime" symbol, like this

Types of Matrices

Column Vector

Column Vector

- A column vector is a matrix with only one column
- It is common to identify column vectors in matrix notation with lower-case boldface, but without the "prime" symbol.

Matrix Operations

Matrix Operations

- Two matrix operations, addition and subtraction, are essentially the same as their familiar scalar equivalents
- But multiplication and division are rather different!
- There is only a limited notion of division in matrix algebra, and
- Matrix multiplication shares some properties with scalar multiplication, but in other ways is dramatically different
- We will try to keep reminding you where you need to be careful!

Matrix Addition

Matrix Addition

- For two matrices \mathbf{A} and \mathbf{B} to be conformable for addition or subtraction, they must have the same numbers of rows and columns
- To add two matrices, simply add the corresponding elements together

Example

$$
\left(\begin{array}{lll}
1 & 4 & 1 \\
1 & 3 & 3 \\
3 & 0 & 5
\end{array}\right)+\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 2 \\
3 & 2 & 0
\end{array}\right)=\left(\begin{array}{lll}
2 & 6 & 2 \\
3 & 5 & 5 \\
6 & 2 & 5
\end{array}\right)
$$

Matrix Subtraction

Matrix Subtraction

- Subtracting matrices works like addition
- You simply subtract corresponding elements

Example

$$
\left(\begin{array}{lll}
1 & 4 & 1 \\
1 & 3 & 3 \\
3 & 0 & 5
\end{array}\right)-\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 2 \\
3 & 2 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & 2 & 0 \\
-1 & 1 & 1 \\
0 & -2 & 5
\end{array}\right)
$$

Properties of Matrix Addition

Matrix addition has some important mathematical properties, which, fortunately, mimic those of scalar addition and subtraction. Consequently, there is little "negative transfer" involved in generalizing from the scalar to the matrix operations.

Properties of Matrix Addition
For matrices \mathbf{A}, \mathbf{B}, and \mathbf{C}, properties include:

- Associativity. $\mathbf{A}+(\mathbf{B}+\mathbf{C})=(\mathbf{A}+\mathbf{B})+\mathbf{C}$
- Commutativity. $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$

Scalar Multiple

Scalar Multiple

- When we multiply a matrix by a scalar, we are computing a scalar multiple, not to be confused with a scalar product, which we will learn about subsequently
- To compute a scalar multiple, simply multiply every element of the matrix by the scalar

Example

$$
2\left(\begin{array}{ll}
3 & 2 \\
2 & 1
\end{array}\right)=\left(\begin{array}{ll}
6 & 4 \\
4 & 2
\end{array}\right)
$$

Properties of Scalar Multiplication

For matrices \mathbf{A} and \mathbf{B}, and scalars a and b, scalar multiplication has the following mathematical properties:

Properties of Scalar Multiplication

- $(a+b) \mathbf{A}=a \mathbf{A}+b \mathbf{A}$
- $a(\mathbf{A}+\mathbf{B})=a \mathbf{A}+a \mathbf{B}$
- $a(b \mathbf{A})=(a b) \mathbf{A}$
- $a \mathbf{A}=\mathbf{A} a$

Scalar Product

Scalar Product

- Given a row vector \mathbf{x}^{\prime} and a column vector \mathbf{y} having q elements each
- The scalar product $\mathbf{x}^{\prime} \mathbf{y}$ is a scalar equal to the sum of cross-products of the elements of \mathbf{x}^{\prime} and \mathbf{y}.

Example
If $\mathbf{x}^{\prime}=\left(\begin{array}{lll}1 & 2 & 1\end{array}\right)$ and $\mathbf{y}=\left(\begin{array}{l}2 \\ 3 \\ 2\end{array}\right)$ then $\mathbf{x}^{\prime} \mathbf{y}=(1)(2)+(2)(3)+(1)(2)=10$

Matrix Transposition

Transposing a matrix is an operation which plays a very important role in multivariate statistical theory. The operation, in essence, switches the rows and columns of a matrix.

Matrix Transposition
Let ${ }_{p} \mathbf{A}_{q}=\left\{a_{i j}\right\}$. Then the transpose of \mathbf{A}, denoted \mathbf{A}^{\prime}, is defined as

$$
{ }_{q} \mathbf{A}_{p}^{\prime}=\left\{a_{j i}\right\}
$$

Example
If ${ }_{2} \mathbf{A}_{3}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$, then ${ }_{3} \mathbf{A}_{2}^{\prime}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$

Matrix Transposition

Some Key Properties
Key Properties of Matrix Transposition

- $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
- $(c \mathbf{A})^{\prime}=c \mathbf{A}^{\prime}$
- $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
- $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
- A square matrix \mathbf{A} is symmetric if and only if $\mathbf{A}=\mathbf{A}^{\prime}$

Matrix Multiplication

Conformability
Conformability

- Matrix multiplication is an operation with properties quite different from its scalar counterpart.
- order matters in matrix multiplication.

Matrix Multiplication

Conformability
Conformability

- That is, the matrix product $\mathbf{A B}$ need not be the same as the matrix product $\mathbf{B A}$.
- Indeed, the matrix product $\mathbf{A B}$ might be well-defined, while the product $\mathbf{B A}$ might not exist.
- When we compute the product $\mathbf{A B}$, we say that \mathbf{A} is post-multiplied by \mathbf{B}, or that \mathbf{B} is premultiplied by A

Matrix Multiplication

Dimension of a Matrix Product
If two or more matrices are conformable, there is a strict rule for determining the dimension of their product

Matrix Multiplication - Dimensions of a Product

- The product ${ }_{p} \mathbf{A}_{q} \mathbf{B}_{r}$ will be of dimension $p \times r$
- More generally, the product of any number of conformable matrices will have the number of rows in the leftmost matrix, and the number of columns in the rightmost matrix.
- For example, the product ${ }_{p} \mathbf{A}_{q} \mathbf{B}_{r} \mathbf{C}_{s}$ will be of dimensionality $p \times s$

Matrix Multiplication

Three Approaches

Three Approaches

- Matrix multiplication might well be described as the key operation in matrix algebra
- What makes matrix multiplication particularly interesting is that there are numerous lenses through which it may be viewed
- We shall examine 3 ways of "looking at" matrix multiplication.
- All of them rely on matrix partitioning, which we'll examine briefly in the next 2 slides

Matrix Multiplication

The Row by Column Approach

Partitioning a Matrix into Rows

- Any $p \times q$ matrix \mathbf{A} may be partitioned into as a set of p rows
- For example, the 2×3 matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3
\end{array}\right)
$$

may be thought of as two rows, ($\left.\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and ($\left.\begin{array}{lll}3 & 3 & 3\end{array}\right)$ stacked on top of each other

- We have a notation for this. We write

$$
\mathbf{A}=\binom{\mathbf{a}_{1}^{\prime}}{\mathbf{a}_{2}^{\prime}}
$$

Matrix Multiplication

The Row by Column Approach

Partitioning a Matrix into Columns

- We can also view any $p \times q$ matrix as a set of q columns, joined side-by-side
- For example, for the 2×3 matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 3 & 3
\end{array}\right)
$$

we can write

$$
\mathbf{A}=\left(\begin{array}{lll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}
\end{array}\right)
$$

where, for example,

$$
\mathbf{a}_{1}=\binom{1}{3}
$$

Matrix Multiplication

The Row by Column Approach

The Row by Column Approach

- Suppose you wish to multiply the two matrices \mathbf{A} and \mathbf{B}, where

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 7 \\
3 & 5
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

- You know that the product, $\mathbf{C}=\mathbf{A B}$, will be a 2×3 matrix
- Partition \mathbf{A} into 2 rows, and \mathbf{B} into 3 columns.
- Element $c_{i, j}$ is the scalar product of row i of \mathbf{A} with column j of \mathbf{B}

Matrix Multiplication

The Row by Column Approach

Again suppose you wish to compute the product $\mathbf{C}=\mathbf{A B}$ using the matrices from the preceding slide.

Example
Compute $c_{1,1}$.

$$
\left(\begin{array}{ll}
2 & 7 \\
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

Taking the product of the row 1 of \mathbf{A} and column 1 of \mathbf{B}, we obtain $(2)(1)+(7)(2)=16$

Matrix Multiplication

The Row by Column Approach

Again suppose you wish to compute the product $\mathbf{C}=\mathbf{A B}$ using the matrices from the preceding slide.

Example

Compute $c_{2,3}$.

$$
\left(\begin{array}{ll}
2 & 7 \\
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

Taking the product of the row 2 of \mathbf{A} and column 3 of \mathbf{B}, we obtain (3)(1)+(5)(3)=18

Matrix Multiplication

Linear Combination of Columns Approach

Linear Combination of Columns

- When you post-multiply a matrix \mathbf{A} by a matrix \mathbf{B}, each column of \mathbf{B} generates, in effect, a column of the product $\mathbf{A B}$
- Each column of \mathbf{B} contains a set of linear weights
- These linear weights are applied to the columns of \mathbf{A} to produce a single column of numbers.

Matrix Multiplication

Linear Combination of Columns Approach
Linear Combination of Columns

- Consider the product

$$
\left(\begin{array}{ll}
2 & 7 \\
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

- The first column of the product is produced by applying the linear weights 1 and 2 to the columns of the first matrix
- The result is

$$
1\binom{2}{3}+2\binom{7}{5}=\binom{16}{13}
$$

Matrix Multiplication

Linear Combination of Columns Approach
Linear Combination of Columns

- Consider once again the product

$$
\left(\begin{array}{ll}
2 & 7 \\
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

- The second column of the product is produced by applying the linear weights 2 and 2 to the columns of the first matrix
- The result is

$$
2\binom{2}{3}+2\binom{7}{5}=\binom{18}{16}
$$

Matrix Multiplication

Linear Combination of Rows Approach
Linear Combination of Rows

- When you pre-multiply a matrix \mathbf{B} by a matrix \mathbf{A}, each row of \mathbf{A} generates, in effect, a rowof the product $\mathbf{A B}$
- Each row of A contains a set of linear weights
- These linear weights are applied to the rows of \mathbf{B} to produce a single row vector of numbers.

Matrix Multiplication

Linear Combination of Rows Approach
Linear Combination of Rows

- Consider the product

$$
\left(\begin{array}{ll}
2 & 7 \\
3 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right)
$$

- The first row of the product is produced by applying the linear weights 2 and 7 to the rows of the second matrix
- The result is

$$
2\left(\begin{array}{lll}
1 & 2 & 1
\end{array}\right)+7\left(\begin{array}{lll}
2 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
16 & 18 & 23
\end{array}\right)
$$

Matrix Multiplication

Mathematical Properties
The following are some key properties of matrix multiplication:
Mathematical Properties of Matrix Multiplication

- Associativity.

$$
(A B) C=A(B C)
$$

- Not generally commutative. That is, often $\mathbf{A B} \neq \mathbf{B A}$.
- Distributive over addition and subtraction.

$$
\mathbf{C}(\mathbf{A}+\mathbf{B})=\mathbf{C A}+\mathbf{C B}
$$

- Assuming it is conformable, the identity matrix \mathbf{I} functions like the number 1 , that is ${ }_{p} \mathbf{A}_{q} \mathbf{I}_{q}=\mathbf{A}$, and ${ }_{p} \mathbf{I}_{p} \mathbf{A}_{q}=\mathbf{A}$.
- $\mathbf{A B}=\mathbf{0}$ does not necessarily imply that either $\mathbf{A}=\mathbf{0}$ or $\mathbf{B}=\mathbf{0}$.

Inverse of a Square Matrix

Definition

Matrix Inverse

- A $p \times p$ matrix has an inverse if and only if it is square and of full rank, i.e., i.e., no column of A is a linear combination of the others.
- If a square matrix \mathbf{A} has an inverse, it is the unique square matrix \mathbf{A}^{-1} such that

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}
$$

Inverse of a Square Matrix

Properties

Mathematical Properties of Matrix Inverses

- $\left(\mathbf{A}^{\prime}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$
- If $\mathbf{A}=\mathbf{A}^{\prime}$, then $\mathbf{A}^{-1}=\left(\mathbf{A}^{-1}\right)^{\prime}$
- The inverse of the product of several invertible square matrices is the product of their inverses in reverse order. For example

$$
(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}
$$

- For nonzero scalar $c,(c \mathbf{A})^{-1}=(1 / c) \mathbf{A}^{-1}$
- For diagonal matrix $\mathbf{D}, \mathbf{D}^{-1}$ is a diagonal matrix with diagonal elements equal to the reciprocal of the corresponding diagonal elements of \mathbf{D}.

Inverse of a Square Matrix

Uses

Systems of Linear Equations

- Suppose you have the two simultaneous equations $2 x_{1}+x_{2}=5$, and $x_{1}+x_{2}=3$.
- These two equations may be expressed in matrix algebra in the form

$$
\mathbf{A x}=\mathbf{b},
$$

or

$$
\left(\begin{array}{ll}
2 & 1 \tag{1}\\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5}{3}
$$

- We wish to solve for x_{1} and x_{2}, which amounts to solving $\mathbf{A x}=\mathbf{b}$ for \mathbf{x}

Inverse of a Square Matrix

Systems of Linear Equations
Solving the System

- To solve $\mathbf{A x}=\mathbf{b}$ for \mathbf{x}, we premultiply both sides of the equation by \mathbf{A}^{-1}, obtaining

$$
\mathbf{A A}^{-1} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

- Since $\mathbf{A A}^{-1}=\mathbf{I}$, we end up with

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

Inverse of a Square Matrix

Systems of Linear Equations

Example

In the previous numerical example, we had

$$
\mathbf{A}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right), \text { and } \mathbf{b}=\binom{5}{3}
$$

It is easy to see that

$$
\mathbf{A}^{-1}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

and so

$$
\mathbf{x}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\binom{5}{3}=\binom{2}{1}
$$

Trace of a Matrix

Trace of a Matrix

- The trace of a square matrix $\mathbf{A}, \operatorname{Tr}(\mathbf{A})$, is the sum of its diagonal elements
- The trace is often employed in matrix algebra to compute the sum of squares of all the elements of a matrix
- Verify for yourself that

$$
\operatorname{Tr}\left(\mathbf{A} \mathbf{A}^{\prime}\right)=\sum_{i} \sum_{j} a_{i, j}^{2}
$$

Trace of a Matrix

We may verify that the trace has the following properties:
(1) $\operatorname{Tr}(\mathbf{A}+\mathbf{B})=\operatorname{Tr}(\mathbf{A})+\operatorname{Tr}(\mathbf{B})$
(2) $\operatorname{Tr}(\mathbf{A})=\operatorname{Tr}\left(\mathbf{A}^{\prime}\right)$
(3) $\operatorname{Tr}(c \mathbf{A})=c \operatorname{Tr}(\mathbf{A})$
(9) $\operatorname{Tr}\left(\mathbf{A}^{\prime} \mathbf{B}\right)=\sum_{i} \sum_{j} a_{i j} b_{i j}$
(6) $\operatorname{Tr}\left(\mathbf{E}^{\prime} \mathbf{E}\right)=\sum_{i} \sum_{j} e_{i j}^{2}$
(0) The "cyclic permutation rule":

$$
\operatorname{Tr}(\mathbf{A B C})=\operatorname{Tr}(\mathbf{C A B})=\operatorname{Tr}(\mathbf{B C A})
$$

